Face Match

The face match api compares faces in two different pictures and tells the similarity between them. A typical use of this is matching identity documents with pictures of a person.

Example

../_images/obama1.jpg
../_images/obama2.jpg
python
import requests

image_data1 = open("obama1.jpg","rb").read()
image_data2 = open("obama2.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/face/match",files={"image1":image_data1,"image2":image_data2}).json()

print(response)

Response

json
{'similarity': 0.73975885, 'success': True}

Example 2

Here we shall compare a picture of Obama with that of Bradley Cooper.

../_images/obama1.jpg
../_images/brad.jpg
python
import requests

image_data1 = open("obama2.jpg","rb").read()
image_data2 = open("brad.jpg","rb").read()

response = requests.post("http://localhost:80/v1/vision/face/match",files={"image1":image_data1,"image2":image_data2}).json()

print(response)

Response

json
{{'similarity': 0.4456827, 'success': True}

As seen above, the match for two different pictures of Obama was very high while the match for Obama and Bradley Cooper was very low.

Performance

DeepStack offers three modes allowing you to tradeoff speed for performance. During startup, you can specify performance mode to be , High , Medium and Low.

The default mode is Medium.

You can specify a different mode during startup as seen below as seen below

bash
docker run -e VISION-FACE=True -e MODE=High -v localstorage:/datastore -p 80:5000 deepquestai/deepstack

Speed Modes are not available on the Raspberry PI Version